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Abstract. Recent years have witnessed the boom of heterogeneous
information network (HIN), which contains different types of nodes and
relations. Many data mining tasks have been explored in this kind of
network. Among them, link prediction is an important task to predict
the potential links among nodes, which are required in many applica-
tions. The contemporary link prediction usually are based on simple
HIN whose schema are bipartite or star-schema. In these HINs, the meta
paths are predefined or can be enumerated. However, in many real net-
worked data, it is hard to describe their network structure with simple
schema. For example, the knowledge base with RDF format include tens
of thousands types of objects and links. On this kind of schema-rich HIN,
it is impossible to enumerate meta paths. In this paper, we study the
link prediction in schema-rich HIN and propose a novel Link Prediction
with automatic meta Paths method (LiPaP). The LiPaP designs an
algorithm called Automatic Meta Path Generation (AMPG) to automat-
ically extract meta paths from schema-rich HIN and a supervised method
with likelihood function to learn weights of the extracted meta paths.
Experiments on real knowledge database, Yago, validate that LiPaP is
an effective, steady and efficient method.

Keywords: Heterogeneous Information Network - Link prediction -
Similarity measure - Meta path

1 Introduction

Nowadays, the study of Heterogeneous Information Network (HIN) become more
and more popular in data mining area [5], where the network includes different
types of nodes and relations. Many data mining tasks have been exploited on
this kind of network, such as clustering [14], and classification [7]. Among those
researches in HIN, link prediction is a fundamental problem that attempts to
estimate the likelihood of the existence of a link between two nodes, based on
observed links and the attributes of nodes. Link prediction is the base of many
data mining tasks, such as data clearness and recommendation.
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Some works have been done to predict link existence in HIN. Because of the
unique semantic characteristic of HIN, meta path [14], a sequence of relations
connecting two nodes, is widely used for link prediction. Utilizing the meta
path, these works usually employ a two-step process to solve link prediction
problem in HIN. The first step is to extract meta path-based feature vectors,
and the second step is to train a regression or classification model to compute the
existence probability of a link [3,12,13,15]. For example, Sun et al. [12] propose
PathPredict to solve the problem of co-author relationship prediction, Cao et al.
[3] propose an iterative framework to predict multiple types of links collectively
in HIN, and Sun et al. [13] model the distribution of relationship building time
to predict when a certain relationship will be formed. These works usually have
a basic assumption: the meta paths can be predefined or enumerated in a simple
HIN. When the HIN is simple, we can easily and manually enumerate some
meaningful and short meta paths [14]. For example, a biboligraphic network with
star schema is used in [12,13,15] and only several meta paths are enumerated.

However, in many real networked data, the network structures are more com-
plex, and meta paths cannot be enumerated. Knowledge graph is the base of
the contemporary search engine [10], where its resource description framework
(RDF) [1] < object, relation, object > naturally constructs a HIN. In such a HIN,
the types of nodes and relations are huge. For example, DBpedia [2], a kind of
knowledge graph, has recorded more than 38 million entities and 3 billion facts.
In this kind of network, it is hard to describe them with simple schema, so we call
them schema-rich HIN. Figure 1 shows a snapshot of the RDF structure extracted
from DBpedia. You can find that there are many types of objects and links in
such a small network, e.g., Person, City, Country. Moreover, there are many

meta paths to connect two object types. For example, for Person and Country
bornin Clty locatedIn

types, there are two meta paths: Person

o P
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Fig. 1. A snapshot of the RDF structure extracted from DBpedia.
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meta paths can connect Person and Country in a real network. So that the meta
paths in this kind of schema-rich HIN are too many to enumerate and it’s hard
to analyze them.

To be specific, the challenges of link prediction in schema-rich HIN are mainly
from two aspects. (1) The meta path cannot be enumerated. As mentioned above,
there are tens of thousands of nodes and links in such schema-rich HIN and the
meta paths in the network have the same order of magnitude. It’s impossible
to enumerate meta paths between two node types. (2) It is also not easy to
effectively integrate these meta paths. Even though masses of meta paths can
be found between target nodes, most of them are meaningless or less important
for link prediction. So that we need to learn weight for each meta path, where
the weight represents the importance of paths for link prediction.

In this paper, we study the link prediction in schema-rich HIN and propose
the Link Prediction with automatic meta Paths method (LiPaP). The LiPaP
designs a novel algorithm, called Automatic Meta Path Generation (AMPG), to
automatically extract meta paths from schema-rich HIN. And then we design an
supervised method with likelihood function to learn the weights of meta paths.
On a real knowledge base Yago, we do extensive experiments to validate the
performances of LiPaP. Experiments show that LiPaP can effectively solve link
prediction in schema-rich HIN through automatically extracting important meta
paths and learning the weights of paths.

2 Preliminary and Problem Definition

In this section, we introduce some basic concepts used in this paper and give the
problem definition.

The Heterogeneous Information Network (HIN) [5] is a kind of infor-
mation network defined as a directed network graph G = (V, E), which consists
of either different types of nodes V or different types of edges E. Specifically,
a information network can be abstracted to a network schema M = (R, L)
where R is the set of the node types and L is the set of the edge types, and
there is a node type mapping function 6 : V' — R, and an edge type mapping
function ¢ : E — L. When the number of node types |R| > 1 or the number of
edge types |L| > 1, the network is a heterogeneous information network.
For example, in bibliographic database, like DBLP [4], papers are connected
together via authors, venues and terms, they can be organized as a star-schema
HIN. Another example is the users and items in e-commerce website which con-
stitutes a bipartite HIN [6].

In a HIN, there can be different paths connecting two entity nodes and
these paths are called as meta path [14]. A meta path [] that is defined as

HR“H R Ry 2N Ro L2, Ly, R4 1, which describes a path between two
node types R; and Ry 1, is going through a series of node types Ry, -+, Rj41 and
a series of link types Ly, --- , L;. Taking the knowledge base in Fig. 1 as an exam-
ple, we can consider the knowledge base as an HIN, which includes many different
node types (e.g., person, city, country) and link types (e.g., bornIn and locate-
dIn). Two node types can be connected by multiple meta paths. For example,
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there are two meta paths connnecting Person and Country: Person bornin

City Locatedln, Country and Person Dicdin City Country.

Traditional HIN usually has a simple network schema, such as bipartite [16]
and star schema [9]. However, in some complex HINSs, there are so many node
types or link types that it is hard to describe their network schema. We call the
HIN with many types of nodes and links as schema-rich HIN. In simple HIN,
the meta paths can be easily enumerated, but it is difficult to do the same in
the schema-rich HIN. Data mining in schema-rich HIN will face new challenges.
Specifically, we define a new task as follows:

Link Prediction in Schema-Rich HIN. Given a schema-rich HIN G and a
training set of entity node pairs ¢ = {(s;,¢;)|1 < ¢ < k}, search a set of meta
paths T = {]],|1 <¢ <e} which can exactly describe the pairs. With these
meta paths, we design a model 7(s,t|7") to do link prediction on the test set

Y = {(us,v;)[1 <i <}

hasCapital %

3 The Method Description

In order to solve the link prediction problem defined above, we propose a novel
link prediction method named Link Prediction with automatic meta Paths
method (LiPaP). This method includes two steps: Firstly, we design an algo-
rithm called Automatic Meta Path Generation (AMPG) to discover use-
ful meta paths with training pairs automatically. Secondly, we use a supervised
method to integrate meta paths to form a model for further prediction.

3.1 Automatic Meta Path Generation

In order to extract the appropriate and relevant meta paths as model features
for link prediction, we would like to show the AMPG algorithm, which can
generate useful meta paths smartly in schema-rich HIN. We would illustrate
AMPG through a toy example in Fig.2, where the training pairs are {(1,8),
(2,8), (3,9), (4,9)}.

The main goal of AMPG is, given the training set of entity pairs, to find all the
useful and relevant meta paths connecting them. These paths to be found would
not only connect more training pairs, but also show much closer relationship to

isCitizenOf

wasBornin

ANNRRNRRRRR RS

isLocatedin

e

Fig. 2. Subgraph example of schema-rich HIN.
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. .. .. isCitizenOf
present implicit features of the training set. For example, —————— is the meta
path initially found by our method in Fig. 3 and it is not only the shortest relation
but also the one connecting most training pairs. Besides, the meta paths to be
found are still most relevant in the candidate paths. Basically, we start to search
from the source nodes step by step to find out the useful meta paths greedily.
At each step, we select the meta path that is most relevant and maybe reaching
more target nodes. Then we check whether the path connects the training pairs
or not. If so, we pick out the meta path, otherwise make a move forward until the
unchecked meta paths are irrelevant enough. It guarantees that the generated
meta paths all well describe the relationship between each training pairs and the
selected paths are not too many to add noise paths.

The AMPG method is a greedy algorithm that heuristically chooses the opti-
mal paths at each step. For judging the priority of meta paths for selection,
AMPG utilizes a similarity score S as a selection criterion based on a similarity
measurement Path-Constrained Random Walk (PCRW) [8], which is to calcu-
late the relevance between the given entity pairs in the meta paths. The higher
similarity score S is, more likely the meta path is to be chosen.

Specifically, in AMPG, we use a data structure to record the situation of each
step. The structure records a meta path passed by, a set of entity pairs reached
and their PCRW values and the similarity score S of the current structure, as
Fig. 3 shown. Besides, we create a candidate set to record the structure to be
handled.

The similarity score S of the structure mentioned above is for judging the
priority of the structure. S measures the similarity of the whole arrival pairs in
the structure. The highest S means the most relevant relationship and the most
promising meta paths, so we get the structure with the highest S at every step.
The definition of similarity score S is as follows:

$=3 20t [D #r(o) )

where s and t are source and reaching entity node respectively on meta path
I1, T is the number of reaching entity nodes and o(s,t|[]) is the PCRW value.
r(s) = 1 — a e N is the contribution of s to the current structure for training
pairs selection balance, where « is the decreasing coefficient of the contribution
as 0.1 because of the good performance on it, and NV is the number of the target
nodes that s has reached through other selected paths. It means if one of source
nodes in ) has more target nodes matched before, N will be larger and S will
be reduced due to the smaller r(s). So that the structure with other source nodes
which have fewer matches will get high priority to be traversed greedily.

In order to get rid of the unimportant or the low pair-matched meta paths,
we set a threshold value [ to judge the structures whether being put to the
candidate set or not.

l=ce|A] (2)

where € is a limited coefficient, |A| is the number of entity pairs in the structure.
If S'is no less than [, add this structure into the candidate set, otherwise delete it.
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Fig. 3. An example of meta-path automatic generation.

Furthermore, we explain AMPG with a case study shown in Fig. 3. The train-
ing pairs are (1, 8), (2, 8), (3,9), (4, 9) and sources nodes are 1, 2, 3, 4. The case
starts with creating an initial structure No.1 and inserts it into the candidate set
as Fig. 3(A) shown. The entity pair is composed of the source node and itself and
no meta path is generated at this step. Our algorithm will read candidate set itera-
tively and choose the structure with highest .S at each step. For each selected struc-

ture, it will be checked if any training pairs are matched. If not, we move one step in
isCitizenOf  wasBornln

HIN, as Fig. 3(B) shown. We can pass by three edge types ,

and YEAL For each passed edge type, we create new structures like No.2 and
No.4. Then, we check the new structures whether fit the conditions of expanding
further and insert them into the candidate set. Remove the used structure No.1

and read next structure. Otherwise, as Fig. 3(C) shown, four pairs are matched,
isCitizenO f
—_——

so a new relevant meta path is generated and its similarity value vec-
tor is recorded. Remove the used structure No.2 and continue to read next. The
algorithm terminates when the candidate set is empty.

The detail process of AMPG is described in Algorithm 1. Step 1-2is the variable
initialization step. Step 3—26 shows the main process of searching meta paths by
greedy S in a loop. In every searching movement, we pop the structure with the
largest S to handle until the candidate set is empty. Finally, the algorithm will
generate a set of meta paths with the related similarity matrix of training pairs.
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Algorithm 1. AMPG(G, ¢)

Input: G: shema-rich HIN; ¢: set of entity training pairs;
Output: T': set of selected meta paths; M: similarity matrix of ¢ corresponding to 7.

1 N <« {0,0,...,0}; //length: |¢|; element is times of each training pair matched to calculate S
2 Create the starting structure and insert to candidate set T
3 while T is not empty do
4 m < {0,0,...,0}; //length: |¢|; record if meta path has pairs matched in this expanding
5 W <= popping the structure with the largest score S from T.
6 for each pair (¢, p) € W do
7 if (q,p) € ¢ then
8 m(q,p) < o(q, p| 1)
9 N(q,p) <= N(q,p) + 1;
10 if m has nonzero element then
11 add the meta-path [] of W into T
12 M <= MJm;
13 break;
14 else
15 create a empty temp Map E inserted with (next passed link, related structure);
16 for each pair (q, p) € W do
17 for each neighbor s without passed in HIN G do
18 u &< edge type u with direct d from p to s //forward: d=1; reverse:d=-1
19 if E does not have the key u® or the related structure then
20 | create a new structure N from W adding into E.
21 1 < the meta path of N
22 insert the tuple((q, s), o (g, s| [])) to N
23 for ecach structure K € E do
24 K.S < cauculated by Equation (1)
25 if K.S > threshold value I then
26 | add K into T

27 return ¥, M

3.2 Integration of Meta Path

Each meta path found by AMPG is important but has different importances
for further link prediction. It’s necessary to find a solution of measuring the
importance for each meta path and integrating them into a link prediction model.

The link prediction can be considered as a classification problem. So we
use the positive and negative samples to train a model to predict whether the
link exists between the given pairs or not. Positive samples are the training
pairs, while negative samples are generated by replacing the target nodes of
the training pairs with the same-typed nodes without the same relations. Thus
positive value is the similarity value vector of each positive pair on all selected
meta paths, while negative value is the vector of negative pair.

For training model, we assume that the weight of each meta path [ [, is w; (i =
1,---,N), w; >0, and sz\; w; = 1. In order to train the appropriate path
weights, we use the log-likelihood function. The specific formula is as follows:

In(t(w,z)) In(1—t(w,27)) |l=|
maxh = +Z:+ el * Z_ g~ | 2 ®)

’wTJL’

where t(w, z) is the Sigmoid function (i.e., t(w,x) = ). x is similar-

ew’e 41
ity value vector of sample pair in all selected paths, 2 positive sample and

z~ negative. g7 is similarity matrix of positive pairs made of 2. And ¢~ is
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2
w
similarity matrix of negative pairs made of z~. I 2” is the regularizer to avoid

overfitting.
After learning weights of relevant meta paths 1", we use a logistic regression
model to integrate meta paths for link prediction.

(s HY) = (1 ¢~ (Eeer moooletl L)), @

where (s,t) is the pair we should do link prediction, and x is each selected meta
path feature, while w, is the weight of & we learn above. And T is the set of
selected meta paths. If 7(s,¢|7) is larger than a specific value, we judge they
would be connected by the link predicted.

4 Experiment

In order to verify the superiority of our designed method of link prediction in
schema-rich HIN, we conduct a series of relevant experiments and validate the
effectiveness of LiPaP from four aspects.

4.1 Dataset

In our experiments, we use Yago to conduct relevant experiments and it is a
large-scale knowledge graph, which derives from Wikipedia, WordNet and GeoN-
ames [11]. The dataset includes more than ten million entities and 120 million
facts made from these entities. We only adopt “COREFact” of this dataset,
which contains 4484914 facts, 35 relationships and 1369931 entities of 3455
types. A fact is a triple: < entity, relationship, entity >, e.g., < NewYork,
locatedin, UnitedStates >.

4.2 Criteria

We use receiver operating characteristic curve known as ROC curve to evaluate
the performance of different methods. It is defined as a plot of true positive rate
(TPR) as the y coordinate versus false positive rate (FPR) as the x coordinate.
TPR is the ratio of the number of true positive decisions and actually positive
cases while FPR is the ratio of the number of false positive decisions and actually
negative cases. The area under the curve is referred to as the AUC. The larger
the area is, the larger the accuracy in prediction is.

4.3 Effectiveness Experiments

This section will validate the effectiveness of our prediction method LiPaP on
accurately predicting links existing in entity pairs. Since there are no existing
solutions for this problem, as a baseline (called PCRW [8]), we enumerate all
meta paths, and the same weight learning method with LiPaP is employed.
Because meta paths with length more than 4 are most irrelevant, the PCRW
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enumerates the meta paths with the length no more than 1, 2, 3, and 4, and the
corresponding methods are called PCRW-1, PCRW-2, PCRW-3, and PCRW-
4, respectively. Based on Yago dataset, we randomly and respectively select

200 entity pairs from two relations iskocatedln g CH=0F, Note that, we
assume that these two types of links are not available in the prediction task. In
this experiment, 100 entities pairs of them are used as the training set, the other
are used as the test set. In LiPaP, we set € in Eq. (2) as 0.005 and the max path
length is also limited to 4.

The results of two link prediction tasks are shown in Fig. 4. It is clear that
LiPaP has better performances than all PCRW methods, which implies that
LiPaP can effectively generate useful meta paths. Moreover, the PCRW generally
has better performance when the path length is longer, since it can exploit more
useful meta paths. However, it will take more cost to search more meta paths,
most of which are irrelevant. For example, PCRW-3 generates more than 80
paths and PCRW-4 finds more than 600 paths with lots of irrelevant paths. On

the contrary, LiPaP only generates 30 meta paths for the DsCitizenOF, ¢ ask.
In order to intuitively observe the effectiveness of meta paths found, Table 1
shows the top 4 generated meta paths and the corresponding training weights

for the isCitizenO f
. isCitizenO . .
the link 2797, The most relevant one is the first meta path which shows

the fact that a person is born in a city and the city is located in a country. It
describes the citizen relationship in fact. The last one with length 4 seems not

task. It is obvious that 4 meta paths are all relevant to

Table 1. Most relevant 4 meta paths for isCitizenO f

Meta path ‘Weight
Porson wasBorndn o Tislocatedln o 0.1425
Person tivealn, County 0.0819
Person livesin City islocatedIn County 0.0744
Person wasBornln City isLeaderOf Person graduatedFrom universityw County | 0.0609
1 v ——= 1
o T
° 0.8 T ° 0.8 - =
& n E g
_g 0.6 T _g 0.6
"§ - —— PCRW-1 '§ i
o 04} . PCRW-2{ o 0.4f PCRW-2 |
[] [ i TR -
I /1 PCRW-3 3 PCRW-3
F o2 ---pcRW-4{ o2 "~ PCRW-4 |
——LiPaP —LiPaP
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False Positive Rate

(a) IsLocatedIn

False Positive Rate

(b) IsCitizenOf

Fig. 4. Prediction accuracy of different methods on two link prediction tasks.
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to be close, but actually has certain logistic relation with the link M
However, these long and important meta paths can be missed if the maximum
length of meta path was limited too short, as PCRW does. While our method
can automatically find these paths and assign them a high importance.

4.4 Influence of the Size of Training Set

In this section, we evaluate the influence of the size of training set
on the prediction performances. The size of training set are set with
{2, 6,10, 20,40, 60,80,100}. Besides our LiPaP, we choose PCRW-2 as baseline,
since it can generate most of useful meta paths and achieve good performances
compared to other PCRW methods. As illustrated in Fig. 5, when the number
of training pairs is smaller than 10, the performances of both methods improve
rapidly with the size of pairs growing. However, when the size is more than 10,
the size of training set has little effect on the performances of both methods.
We think the reason lies in that too small training set cannot discover all useful
meta paths, while large training set may introduce much noise. When the size
of training set is from 10 to 20in this dataset, it is good enough to discover all
useful meta paths and avoid much noise. Furthermore, it can save space and
time to learn model and make the performance of our method better.

4.5 Impact of Weight Learning

To illustrate the benefit of weight learning, we redone the experiments on the
1sCutizen9], task mentioned in Sect. 4.3. We run LiPaP with the weight learning
or random weights, and with average weights. Figure 6 shows the performances
of these methods. It is obvious that the weight learning can improve prediction
performances. The model with random weight performs worst, owing to giving
the more relevant paths low weights. The model with weight just has a little
better performance than the model with average weight, because the meta path

0.95f
0.9f
0.85f
S os
2 o
0.75f )
0.7} ,I - €~ - LiPaP—-isLocatedIn
1 PCRW-2-isLocatedlIf
0655 & =—f— LiPaP-isCitizenOf
P —6— PCRW-2-isCitizenOf
[ 20 40 60 80 100

number of train pairs

Fig. 5. Influence of different sizes of training set.
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features generated by AMPG are all relevant and important, the most important
feature also has not get a very low weight in the model with average weight. So
the performance of the model with average weight is also not poor in spite of
being inferior to the model with weight. Therefore, the weight learning can adjust
the importance of different meta paths so as to integrate them well and make
the model better.

4.6 Efficiency

In this section, we choose 5 different sizes of training set, i.e., {20, 40, 60, 80, 100},
to validate the efficiency of finding meta paths of different methods. Figure 7

demonstrates the running time on different models for the isLocatedIn, 4 k. Tt
is obvious that the running time of these models approximate linearly increase
with the increase of the size of training set. In spite of the small running time,
the short meta paths found by PCRW-1 and PCRW-2 restrict their prediction
performances. Our LiPaP has smaller running time than PCRW-3 and PCRW-4,
since it only finds a small number of important meta paths. In this way, LiPaP
has a better balance on effectiveness and efliciency.

N

' ,—p/ 10
;———e———e—”e—/de P
[
0.8 1 b 1 O(
'
® ' = N
hid ' E / —B— PCRW-1
] 0.6 : 1 2 10% PCRW-2 | {
= ’ E —¢— PCRW-3
3 4 =3 —E— PCRW-4.
E 0.4 1 £ 10* —o— Lipap
H =5
= = = = Model With average Weight &
0.2 = Model With Weight Learning -| 10>
Model With Random Weight,
0 107
o 0.2 0.4 0.6 0.8 1 20 40 60 80 100
False Positive Fate Number of Example Pairs

Fig. 6. Effectiveness of weight learning. Fig. 7. Running times of different methods.

5 Conclusions

In this paper, we introduce a novel link prediction method in schema-rich HIN
named Link Prediction with automatic meta Paths (LiPaP), which proposes
an algorithm called AMPG to automatically extract meta paths based on given
training pairs and designs an supervised method to learn weights of the extracted
meta paths to form a link prediction model. Experiments on real knowledge
database, Yago, validate the effectiveness, efficiency, and feasibility of LiPaP.
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